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On the Single-Point Determination of 
Intrinsic Viscosity 

T. D. VARMA and M. SENGUPTA, Defence Research Laboratory 
(Ailuteriuls): Kanpur 4 ,  India 

Synopsis 
In the present paper we have analytically derived a single-point equation for deter- 

mining the intrinsic viscosity of a polymer. It is observed that the proposed equation 
gives a much better agreement with the extrapolated value of [v] over a wide range of 
concentration for good as well as poor polymer-solvent systems. 

INTRODUCTION 
It is convenient to determine the intrinsic viscosity [ v ]  of a polymer by 

Solomon measurement of its viscosity in solution at  a single concentration. 
and Ciuta‘ proposed the use of the following equation: 

Narr et a1.2 have deduced this equation from the viscosity equation of 
Huggins3: 

Solomon and Gotesman4 analytically derived another single-point equation 

The remarkably simple equations of Solomon and Ciuta and Solomon 
and Gotesman which contain no constant characteristic of polymer solvent 
system give fairly accurate values of [ v ]  at low concentrations. Shroff5 
and Pechoc6 have shown that the Solomon-Ciuta equation is valid for good 
polymer solvent systems where K’ of eq. ( 2 )  is 0.3 6 K’ 6 0.4. However, 
when K‘ is significantly out of this range, as is the case with poor solvents, 
these equations give [v] values that differ considerably from the extrapo- 
lated value of [ v ] .  

Deb and Chatterjee’ derived another single-point equation by eliminating 
K’ from the Schulz-Blaschkes equation: 
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Their equation is 

(5) 
1 

[ql = - [3(ln qr - q a p  + ' / ~ ~ s p )  1'". 
C 

The above equation was also derived by Palit and Kar9 by assuming 
K' = 0 and including higher-order terms in the polynomial expansion of 
In 77. 

In  the present paper we have derived a single-point equation by using the 
empirical viscosity relation of Schramek.'O Our equation gives accurate 
results for good as well as poor polymer solvent systems. 

THEORETICAL ANALYSIS 

We start from the empirical viscosity relation of Schramek'O: 

m 
?k = f(c) = [ q ]  [I + 
c 

This equation has two parameters, K' and m, and is quite general. In  
fact, it reduces to  the Huggins equation when m = 1, to the Schulz-Blaschke 
equation and Martinlo equation when m = - 1 and 00 , respectively. 

By the definition of intrinsic 
viscosity, we have 

The function In q l / c  is denoted by @(c). 

V S P  [q] = Lim - = f(0) 
C - t O  c 

In q r  
[ q ]  = Lim- = 9(0) 

c - 0  c 

Functionsf(c) and @(c) can be expanded in Taylor-Maclaurin form, 

(7) 

(8) 

(9) 
C2 a+) = 9(0) + C W ( 0 )  + 5 9"(0) + . . . . 

Since q, = 1 + qrp, In qr can be expanded in the following form (for 
o s p  < 1): 

(10) 

which gives 

This can be written in the form 

(- l)j 
f(c) - *(c) = c 7 - j f ( c > c j - ' .  (12) 

i = 2  3 
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From eqs. (8) and (9) we get 

where f(")(O) and @(")(O) denote the nth derivatives off and @ with respect 
to  c a t  c = 0. 

We shall now discuss various approximations of eqs. (12) and (13): 
(a) It will be observed from eqs. (12) and (13) that f(c) = @(c) when 

c = 0, i.e., f(0) = @ ( O ) ,  which is the intrinsic viscosity by definition [eq. 
(7) I : 

f(0) = @ ( O )  = hl. 
(b) Differentiating eq. (13) with respect to c, we get 

(- l ) i  
f'(c) - @'(c) = c __ [ ( j  - l )c~-yqc)  + C 9 5 ( C )  1'1. 

j = 2  j 
whenc = 0, 

Y(O> - @'(O) = '/2S(O) = '/2[qI2. 

vsp - In v7 = '/2[r1I2c2 

Substituting in eq. (13), we get 

which is the Solomon-Ciuta equation. 
(c) Terms higher than c2 can be included in eq. (16) for a better ap- 

This is achieved by including f"(c) - @"(c) in eq. (13). proximation. 
Differentiating eq. (14) with respect to  c, 

(- l) i  
f y C )  - @yc) = C [ ( j  - i ) ( j  - 2)ci-3ffi(~) 

j=2 3 
+ 2 ( j  - l)ci-2{fi(c)f' + d-'{f(~))"]. (17) 

Sincef'(0) = K'[qI2, from eq. (6), eq. (17) gives, for c = 0, 

j y o )  - @'yo) = 2 ( ~ '  - 1/3)[q13. 

qSp  - In q r  = '/2[v12c2 + (K' - '/3) [vI3c3 

(18) 

(19) 

Substituting eqs. (15) and (18) in eq. (13) gives 

which can be reduced to  the Solomon-Gotesman equation by eliminating K' 
from i t  with the help of the Huggins equation, eq. (2). For good polymer 
solvent systems, K' - and the second term on the right-hand side of 
eq. (19) is negligible in comparison with 1/2[q]2c2. Equation (19) thus 
reduces to  the Solomon-Ciuta equation. 

For a better approximation, we included terms higher than [qI3c3 
in eq. (19). This is achieved by including f"'(c) - @'"(c) in eq. (13). 
Proceeding in the above manner, we get 

(d) 
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Equation (13) gives 

vsp - In tr = __ [q12c2 [l + 2(K‘ - k ) [ q ] c  
2 

m K”) [q12c2]. (21) 

Form = 1; the above equation reduces to the modified single-point equation 
of Shroff .5 

With the help of eq. (6), eq. (21) can be reduced to the following form: 

+ ((2” + &) Kl2 - 5(.’ + a)} q 2 8 p ] .  (22) 

For good polymer-solvent systems, K’ 1: l/3, eq. (22) reduces to 

At low concentrations, qzSp  << 1, and our equation reduces to the Solomon- 
Ciuta equation. For higher concentrations or for the polymer-solvent 
systems where K‘ differs significantly from the value of l/s, the qsp and 
qzSp  terms in eq. (22)  give a significant contribution and hence cannot 
be neglected. Assuming K’ = ‘/2 for poor solvents, eq. (22) reduces to 

DISCUSSION 

Viscosity data on some polymer-solvent systems are taken from the 
literature. Intrinsic viscosity calculated with our equation is compared 
with that obtained from the Solomon-Ciuta, Solomon-Gotesman, and Deb- 
Chatterjee equations. The results for good and poor polymer-solvent sys- 
tems are given in Tables I and 11, respectively. 

For good polymer-solvent systems, it is observed that the Solomon- 
Ciuta and Solomon-Gotesman equations give fairly accurate values of 
[q]  a t  low concentrations. At higher concentrations, however, the devia- 
tion from the extrapolated value of [q] is considerable. This large error 
is due to neglect of higher-order terms in the derivation of these equations. 
However, the Solomon-Gotesman equation gives better results. The 
Deb-Chatterjee equation gives much higher values of [ q ]  even a t  low con- 
centrations. This behavior of the Deb-Chatterjee equation is quite natu- 
ral because in its derivation it was assumed that K’ = 0. However, Gil- 
lispie and Hulme12 have shown that the results obtained from this equation 
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TABLE I1 
Comparison of [q] Values for Poor Polymer-Solvent Systems 

[q] Calculated 

Solomon- Deb- 
Solomon- Gotes- Chatter- Our 

Concn., [q] Ciuta man jee equation 
Polymer-solvent system g/dl Graph equation equation equation m = m 

PolyetJhylene-p- 
xylenea 

Poly(methy1meth- 
acry1ate)-acetoneb 

Poly(viny1 acetate)- 
acetophenone” 

Polystyrerie-1.7: 8.i 
acetone: methyl 
cyclohexaned 

0.15 
0.30 0.954 
0.4.i 
0.20 
0.40 0.694 
0.60 
0.20 
0.40 0.621 
0.60 
0 .  1.5 
0.30 0.943 
0.45 

0.980 
0.990 
1 ,003 
0.713 
0.728 
0.738 
0.628 
0.642 
0.6.iO 
0.966 
0.989 
1.002 

0.9.70 
0.963 
0.980 
0.711 
0.722 
0.727 
0.632 
0.640 
0.643 
0.967 
0.981 
0.986 

1.003 
1.013 
1.036 
0.686 
0.740 
0.78.5 
0.640 
0.642 
0.670 
0.992 
1 ,003 
1.039 

0.937 
0.953 
0.9.50 
0.702 
0.700 
0.698 
0.627 
0.623 
0.621 
0.944 
0.948 
0.948 

a Data of Trernentoa~i .~~ 
b Data of Moore and Fort.13 
c Data of Daoust and Hinfret,.14 
d Data of Palit, Colombo, arid Mark.’* 

are identical with those obtained from the Huggins equation when K‘ = 

It is observed that our eq. (23) gives very good agreement with the ex- 
trapolated values of [TI. In  extremely good polymer-solvent systems, our 
eq. (23) with rn = - 1 gives accurate results, whereas for fairly good poly- 
mer-solvent systems eq. (23) with rn = + 1 gives fairly accurate values of 
[TI. 
(i) For extremely good polymer-solvent systems : 

l /4 .  

We can thus write our eq. (23) in the following form: 

(ii) For fairly good polymer-solvent systems : 

(25 )  

For poor polymer-solvent systems, where K’ - the existing single- 
point equations give a very high value of 

a t  higher concentrations. 
tained from the existing equations are in the following order: 

Even here it, is observed that the results ob- 

[T ]Deb-Chatterjee > [V ISoloinon-~~tesii~nn > [V ]SolonionCiuts > [V 1gra1,h- 
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Our eq. (24) for poor solvents with m = ~0 gives the best results. 
thus write the equation for poor polymer-solvent systems as 

We can 

For some polymer-solvent systems, however, it is observed that the value 
of K' is very much different from its value of 1/8 and l / Z  for good and poor 
systems, respectively. In  such cases more accurate values of [q] may be 
obtained by using the general eq. (22) if K' for that particular polymer- 
solvent system can be estimated. 

CONCLUSIONS 

It is concluded, therefore, that the existing single-point equations are 
valid only for good polymer-solvent systems, where K' - l /3 ,  at low con- 
centrations. For poor polymer-solvent systems and also a t  higher con- 
centrations, these equations gives a poor agreement with the extrapolated 
value of [q]. Our eqs. (25) and (26) for good polymer-solvent systems and 
eq. (27) for poor polymer-solvent systems give a fairly accurate value of 
[q] over a wide range of concentrations. 

The authors are extremely grateful to Dr. J. N. Nanda, Director, Defence Research 
Laboratory (Materials), Kanpur, for his guidance and many valuable suggestions. 
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