On the Single-Point Determination of Intrinsic Viscosity

T. D. VARMA and M. SENGUPTA, Defence Research Laboratory
(Materials), Kanpur 4, India

Synopsis

In the present paper we have analytically derived a single-point equation for determining the intrinsic viscosity of a polymer. It is observed that the proposed equation gives a much better agreement with the extrapolated value of $[\eta$] over a wide range of concentration for good as well as poor polymer-solvent systems.

INTRODUCTION

It is convenient to determine the intrinsic viscosity [η] of a polymer by measurement of its viscosity in solution at a single concentration. Solomon and Ciuta ${ }^{1}$ proposed the use of the following equation:

$$
\begin{equation*}
[\eta]=\frac{1}{c}\left[2\left(\eta_{s p}-\ln \eta_{r}\right)\right]^{1 / 2} . \tag{1}
\end{equation*}
$$

Narr et al. ${ }^{2}$ have deduced this equation from the viscosity equation of Huggins ${ }^{3}$:

$$
\begin{equation*}
\frac{\eta_{s p}}{c}=[\eta]+K^{\prime}[\eta]^{2} c \tag{2}
\end{equation*}
$$

Solomon and Gotesman ${ }^{4}$ analytically derived another single-point equation

$$
\begin{equation*}
[\eta]=\frac{\eta_{s p}}{c}\left[1+1 / 3 \eta_{s p}\right]^{-1} \tag{3}
\end{equation*}
$$

The remarkably simple equations of Solomon and Ciuta and Solomon and Gotesman which contain no constant characteristic of polymer solvent system give fairly accurate values of [η] at low concentrations. Shroff ${ }^{5}$ and Pechoc ${ }^{6}$ have shown that the Solomon-Ciuta equation is valid for good polymer solvent systems where K^{\prime} of eq. (2) is $0.3 \leqslant K^{\prime} \leqslant 0.4$. However, when K^{\prime} is significantly out of this range, as is the case with poor solvents, these equations give $[\eta]$ values that differ considerably from the extrapolated value of $[\eta]$.

Deb and Chatterjee ${ }^{7}$ derived another single-point equation by eliminating K^{\prime} from the Schulz-Blaschke ${ }^{8}$ equation:

$$
\begin{equation*}
\frac{\eta_{s p}}{c}=[\eta]+K^{\prime}[\eta] \eta_{s p} . \tag{4}
\end{equation*}
$$

Their equation is

$$
\begin{equation*}
[\eta]=\frac{1}{c}\left[3\left(\ln \eta_{\Gamma}-\eta_{s p}+1 / 2 \eta^{2}{ }_{8 p}\right)\right]^{1 / 3} . \tag{5}
\end{equation*}
$$

The above equation was also derived by Palit and Kar^{9} by assuming $K^{\prime}=0$ and including higher-order terms in the polynomial expansion of $\ln \eta_{7}$.

In the present paper we have derived a single-point equation by using the empirical viscosity relation of Schramek. ${ }^{10}$ Our equation gives accurate results for good as well as poor polymer solvent systems.

THEORETICAL ANALYSIS

We start from the empirical viscosity relation of Schramek ${ }^{10}$:

$$
\begin{equation*}
\frac{\eta_{s p}}{c}=f(c)=[\eta]\left[1+\frac{\left.K^{\prime}[\eta] c\right]}{m}\right]^{m} . \tag{6}
\end{equation*}
$$

This equation has two parameters, K^{\prime} and m, and is quite general. In fact, it reduces to the Huggins equation when $m=1$, to the Schulz-Blaschke equation and Martin ${ }^{10}$ equation when $m=-1$ and ∞, respectively.

The function $\ln \eta_{r} / c$ is denoted by $\Phi(c)$. By the definition of intrinsic viscosity, we have

$$
\begin{align*}
& {[\eta]=\operatorname{Lim}_{c \rightarrow 0} \frac{\eta_{s p}}{c}=f(0)} \\
& {[\eta]=\operatorname{Lim}_{c \rightarrow 0} \frac{\ln \eta_{\tau}}{c}=\Phi(0)} \tag{7}
\end{align*}
$$

Functions $f(c)$ and $\Phi(c)$ can be expanded in Taylor-Maclaurin form,

$$
\begin{gather*}
f(c)=f(0)+c f^{\prime}(0)+\frac{c^{2}}{2!} f^{\prime \prime}(0)+\ldots \tag{8}\\
\Phi(c)=\Phi(0)+c \Phi^{\prime}(0)+\frac{c^{2}}{2!} \Phi^{\prime \prime}(0)+\ldots \tag{9}
\end{gather*}
$$

Since $\eta_{r}=1+\eta_{s p}$, $\ln \eta_{r}$ can be expanded in the following form (for $\eta_{s p}<1$):

$$
\begin{equation*}
\ln \eta_{r}=\eta_{s p}-\frac{\eta^{2} s p}{2}+\frac{\eta^{3} s p}{3}-\ldots \tag{10}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\Phi(c)=\frac{\ln \eta_{r}}{c}=\frac{\eta_{s p}}{c}-\frac{c}{2}\left(\frac{\eta_{s p}}{c}\right)^{2}+\frac{c^{2}}{3}\left(\frac{\eta_{s p}}{c}\right)^{3}-\ldots \tag{11}
\end{equation*}
$$

This can be written in the form

$$
\begin{equation*}
f(c)-\Phi(c)=\sum_{j=2} \frac{(-1)^{i}}{j} f^{j}(c) c^{j-1} \tag{12}
\end{equation*}
$$

From eqs. (8) and (9) we get

$$
\begin{equation*}
\eta_{s p}-\ln \eta_{r}=c[f(c)-\Phi(c)]=\sum_{n=0} \frac{f^{(n)}(0)-\Phi^{(n)}(0)}{n!} c^{n+1} \tag{13}
\end{equation*}
$$

where $f^{(n)}(0)$ and $\Phi^{(n)}(0)$ denote the nth derivatives of f and Φ with respect to c at $c=0$.

We shall now discuss various approximations of eqs. (12) and (13):
(a) It will be observed from eqs. (12) and (13) that $f(c)=\Phi(c)$ when $c=0$, i.e., $f(0)=\Phi(0)$, which is the intrinsic viscosity by definition [eq. (7)]:

$$
f(0)=\Phi(0)=[\eta] .
$$

(b) Differentiating eq. (13) with respect to c, we get

$$
\begin{equation*}
f^{\prime}(c)-\Phi^{\prime}(c)=\sum_{j=2} \frac{(-1)^{j}}{j}\left[(j-1) c^{j-2} f^{j}(c)+c^{j-1}\left\{f^{j}(c)\right\}^{\prime}\right] \tag{14}
\end{equation*}
$$

when $c=0$,

$$
\begin{equation*}
f^{\prime}(0)-\Phi^{\prime}(0)=1 / 2 f^{2}(0)=1 / 2[\eta]^{2} \tag{15}
\end{equation*}
$$

Substituting in eq. (13), we get

$$
\begin{equation*}
\eta_{s p}-\ln \eta_{r}=1 / 2[\eta]^{2} c^{2} \tag{16}
\end{equation*}
$$

which is the Solomon-Ciuta equation.
(c) Terms higher than c^{2} can be included in eq. (16) for a better approximation. This is achieved by including $f^{\prime \prime}(c)-\Phi^{\prime \prime}(c)$ in eq. (13). Differentiating eq. (14) with respect to c,

$$
\begin{align*}
f^{\prime \prime}(c)-\Phi^{\prime \prime}(c)=\sum_{j=2} \frac{(-1)^{j}}{j} & {\left[(j-1)(j-2) c^{j-3} f^{j}(c)\right.} \\
& \left.+2(j-1) c^{j-2}\left\{f^{j}(c)\right\}^{\prime}+c^{j-1}\left\{f^{j}(c)\right\}^{\prime \prime}\right] \tag{17}
\end{align*}
$$

Since $f^{\prime}(0)=K^{\prime}[\eta]^{2}$, from eq. (6), eq. (17) gives, for $c=0$,

$$
\begin{equation*}
f^{\prime \prime}(0)-\Phi^{\prime \prime}(0)=2\left(K^{\prime}-1 / 3\right)[\eta]^{3} \tag{18}
\end{equation*}
$$

Substituting eqs. (15) and (18) in eq. (13) gives

$$
\begin{equation*}
\eta_{s p}-\ln \eta_{t}=1 / 2[\eta]^{2} c^{2}+\left(K^{\prime}-1 / 3\right)[\eta]^{3} c^{3} \tag{19}
\end{equation*}
$$

which can be reduced to the Solomon-Gotesman equation by eliminating K^{\prime} from it with the help of the Huggins equation, eq. (2). For good polymer solvent systems, $K^{\prime} \sim 1 / 3$ and the second term on the right-hand side of eq. (19) is negligible in comparison with $1 / 2[\eta]^{2} c^{2}$. Equation (19) thus reduces to the Solomon-Ciuta equation.
(d) For a better approximation, we included terms higher than $[\eta]^{3} c^{3}$ in eq. (19). This is achieved by including $f^{\prime \prime \prime}(c)-\Phi^{\prime \prime \prime}(c)$ in eq. (13). Proceeding in the above manner, we get

$$
\begin{equation*}
f^{\prime \prime \prime}(0)-\Phi^{\prime \prime \prime}(0)=3\left[\frac{1}{2}-2 K^{\prime}+\frac{2 m-1}{m} K^{\prime 2}\right] \tag{20}
\end{equation*}
$$

Equation (13) gives

$$
\begin{align*}
& \eta_{s p}-\ln \eta_{T}=\frac{[\eta]^{2} c^{2}}{2}\left[1+2\left(K^{\prime}-\frac{1}{3}\right)[\eta] c\right. \\
&\left.+\left(\frac{1}{2}-2 K^{\prime}+\frac{2 m-1}{m} K^{\prime 2}\right)[\eta]^{2} c^{2}\right] \tag{21}
\end{align*}
$$

For $m=1$, the above equation reduces to the modified single-point equation of Shroff. ${ }^{5}$
With the help of eq. (6), eq. (21) can be reduced to the following form:

$$
\begin{align*}
{[\eta]=\frac{1}{c}\left[2\left(\eta_{s p}-\ln \eta_{r}\right)\right]^{1 / 2} } & {\left[1-\left(K^{\prime}-\frac{1}{3}\right) \eta_{s p}\right.} \\
& \left.+\left\{\left(\frac{3}{2}+\frac{1}{2 m}\right) K^{\prime 2}-\frac{1}{3}\left(K^{\prime}+\frac{1}{4}\right)\right\} \eta_{s p}^{2}\right] \tag{22}
\end{align*}
$$

For good polymer-solvent systems, $K^{\prime} \simeq 1 / 3$, eq. (22) reduces to

$$
\begin{equation*}
[\eta]=\frac{1}{c}\left[2\left(\eta_{s p}-\ln \eta_{r}\right)\right]^{1 / 2}\left[1+\left(\frac{1}{m}-\frac{1}{2}\right) \frac{\eta_{s p}^{2}}{18}\right] \tag{23}
\end{equation*}
$$

At low concentrations, $\eta_{s p}^{2} \ll 1$, and our equation reduces to the SolomonCiuta equation. For higher concentrations or for the polymer-solvent systems where K^{\prime} differs significantly from the value of $1 / 3$, the $\eta_{s p}$ and $\eta_{s p}^{2}$ terms in eq. (22) give a significant contribution and hence cannot be neglected. Assuming $K^{\prime}=1 / 2$ for poor solvents, eq. (22) reduces to

$$
\begin{equation*}
[\eta]=\frac{1}{c}\left[2\left(\eta_{s p}-\ln \eta_{r}\right)\right]^{1 / 2}\left[1-\frac{\eta_{s p}}{6}+\frac{\eta_{s p}^{2}}{8}\left(\frac{1}{m}-\frac{1}{2}\right)\right] . \tag{24}
\end{equation*}
$$

DISCUSSION

Viscosity data on some polymer-solvent systems are taken from the literature. Intrinsic viscosity calculated with our equation is compared with that obtained from the Solomon-Ciuta, Solomon-Gotesman, and DebChatterjee equations. The results for good and poor polymer-solvent systems are given in Tables I and II, respectively.

For good polymer-solvent systems, it is observed that the SolomonCiuta and Solomon-Gotesman equations give fairly accurate values of $[\eta]$ at low concentrations. At higher concentrations, however, the deviation from the extrapolated value of $[\eta]$ is considerable. This large error is due to neglect of higher-order terms in the derivation of these equations. However, the Solomon-Gotesman equation gives better results. The Deb-Chatterjee equation gives much higher values of $[\eta]$ even at low concentrations. This behavior of the Deb-Chatterjee equation is quite natural because in its derivation it was assumed that $K^{\prime}=0$. However, Gillispie and Hulme ${ }^{12}$ have shown that the results obtained from this equation
TABLE I
Comparison of [η] Values for Good Polymer-Solvent Systems

Polymer-solvent system	Conen., g/dl	[η] Graph	${ }_{[\eta]}$ Calculated				
			SolomonCiuta equation	SolomonGotesman equation	DebChatterjee equation	Our equation	
						$m=-1$	$m=1$
Poly (methyl methacrylate)benzene ${ }^{\text {a }}$	0.15		1.260	1.252	1.266	1.258	1.261
	0.30	1.261	1.250	1.237	1.236	1.236	1.260
	0.45		1.244	1.216	1.228	1.228	1.260
Poly(vinyl acetate)chloroform ${ }^{\text {b }}$	0.15		1.002	0.998	0.992	0.999	1.002
	0.30	1.000	0.998	0.991	1.023	0.992	1.002
	0.45		0.994	0.981	1.038	0.989	1.002
Cellulose acetateacetone ${ }^{\text {c }}$	0.15		0.914	0.910	0.930	0.913	0.914
	0.30	0.920	0.934	0.926	0.945	0.928	0.935
	0.45		0.958	0.944	0.975	0.933	0.953
Polystyrene-toluene ${ }^{\text {d }}$	0.10		1.844	1.842	1.871	1.842	1.844
	0.15	1.843	1.857	1.844	1.890	1.843	1.860
	0.20		1.866	1.843	1.919	1.845	1.879

[^0]TABLE II
Comparison of [η] Values for Poor Polymer-Solvent Systems

Polymer-solvent system	Conen., g/dl	[η] Graph	[η] Calculated			
			SolomonCiuta equation	Solomon-Gotesman equation	Deb- Chatterjee equation	Our equation $m=\infty$
Polyethylene- p xylene ${ }^{\text {a }}$	0.15	0.954	0.980	0.950	1.003	0.957
	0.30		0.990	0.963	1.013	0.953
	0.45		1.003	0.980	1.036	0.950
Poly(methylmeth-acrylate)-acetone ${ }^{\text {b }}$	0.20	0.694	0.713	0.711	0.686	0.702
	0.40		0.72 x	0.722	0.740	0.700
	0.60		0.738	0.727	0.785	0.698
Poly(vinyl acetate)acetophenone ${ }^{\text {c }}$	0.20	0.621	0.628	0.632	0.640	0.627
	0.40		0.642	0.640	0.642	0.623
	0.60		0.650	0.643	0.670	0.621
Polystyrene-15:85 acetone:methyl cyclohexane ${ }^{\text {d }}$	0.15	$0.94{ }^{5}$	0.966	0.967	0.992	0.944
	0.30		0.989	0.981	1.003	0.948
	0.45		1.002	0.986	1.039	0.948

a Data of Trementozzi. ${ }^{17}$
${ }^{\mathrm{b}}$ Data of Moore and Fort. ${ }^{13}$
c Data of Daoust and Rinfret. ${ }^{14}$
${ }^{d}$ Data of Palit, Colombo, and Mark. ${ }^{18}$
are identical with those obtained from the Huggins equation when $K^{\prime}=$ $1 / 4$.

It is observed that our eq. (23) gives very good agreement with the extrapolated values of $[\eta]$. In extremely good polymer-solvent systems, our eq. (23) with $m=-1$ gives accurate results, whereas for fairly good poly-mer-solvent systems eq. (23) with $m=+1$ gives fairly accurate values of [η]. We can thus write our eq. (23) in the following form:
(i) For extremely good polymer-solvent systems:

$$
\begin{equation*}
[\eta]=\frac{1}{c}\left[2\left(\eta_{s p}-\ln \eta_{r}\right)\right]^{1 / 2}\left[1-\frac{\eta_{s p}^{2}}{12}\right] . \tag{25}
\end{equation*}
$$

(ii) For fairly good polymer-solvent systems:

$$
[\eta]=\frac{1}{c}\left[2\left(\eta_{s p}-\ln \eta_{r}\right)\right]^{1 / 2}\left[1+\begin{array}{c}
\eta_{s p}^{2} \tag{26}\\
18
\end{array}\right]
$$

For poor polymer-solvent systems, where $K^{\prime} \sim 1 / 2$, the existing singlepoint equations give a very high value of

$$
\Delta[\eta]=\frac{[\eta]_{\text {eale }}-[\eta]_{\text {expt }}}{[\eta]_{\text {expt }}} \times 100 \%
$$

at higher concentrations. Even here it is observed that the results obtained from the existing equations are in the following order:

$$
[\eta]_{\text {Deb-Chatterjee }}>[\eta]_{\text {Solomon-Gotesman }}>[\eta]_{\text {Solomon_Ciuta }}>[\eta]_{\text {graph h }} .
$$

Our eq. (24) for poor solvents with $m=\infty$ gives the best results. We can thus write the equation for poor polymer-solvent systems as

$$
\begin{equation*}
[\eta]=\frac{1}{c}\left[2\left(\eta_{s p}-\ln \eta_{r}\right)\right]^{1 / 2}\left[1-\frac{\eta_{s p}}{6}-\frac{\eta_{s p}^{2}}{16}\right] . \tag{27}
\end{equation*}
$$

For some polymer-solvent systems, however, it is observed that the value of K^{\prime} is very much different from its value of $1 / 3$ and $1 / 2$ for good and poor systems, respectively. In such cases more accurate values of [η] may be obtained by using the general eq. (22) if K^{\prime} for that particular polymersolvent system can be estimated.

CONCLUSIONS

It is concluded, therefore, that the existing single-point equations are valid only for good polymer-solvent systems, where $K^{\prime} \sim 1 / 3$, at low concentrations. For poor polymer-solvent systems and also at higher concentrations, these equations gives a poor agreement with the extrapolated value of $[\eta]$. Our eqs. (25) and (26) for good polymer-solvent systems and eq. (27) for poor polymer-solvent systems give a fairly accurate value of [η] over a wide range of concentrations.

The authors are extremely grateful to Dr. J. N. Nanda, Director, Defence Research Laboratory (Materials), Kanpur, for his guidance and many valuable suggestions.

References

1. O. F. Solomon and I. Z. Ciuta, J. Appl. Polym. Sci., 6, 683 (1963).
2. R. Z. Narr, H. H. Zabusky, and R. F. Heitmiller, J. Appl. Polym. Sci., 7, S30 (1963).
3. M. L. Huggins, Ind. Eng. Chem., 35, 980 (1943).
4. O. F. Solomon, and B. S. Gotesman, Makromol. Chem., 104, 177 (1967).
5. R. N. Shroff, J. Appl. Polym. Sci., 9, 1547 (1965).
6. V. Pechoc, J. Appl. Polym. Sci., 8, 1281 (1964).
7. P. C. Deb and S. R. Chatterjee, unpublished work.
8. G. V. Schulz and F. Blaschke, J. Prakt. Chem., 158, 130 (1941).
9. S. R. Palit and I. Kar, J. Polym. Sci. A-1, 5, 2629 (1967).
10. W. Schramek, Makromol. Chem., 17, 19 (1955).
11. A. F. Martin, Amer. Chem. Soc. Meeting, Memphis, 1942, discussed by M. L. Huggins in Cellulose and Cellulose Derivatives, High Polymer, Vol. 5, E. Ott, ed., Interscience, New York, 1943, pp. 966-971.
12. T. Gillispie, and M. A. Hulme, J. Appl. Polym. Sci., 13, 2031 (1969).
13. W. R. Moore, and R. J. Fort, J. Polym. Sci., A-1, 929 (1963).
14. H. Daoust, and M. Rinfret, J. Colloid Sci., 7, 11 (1952).
15. J. W. Phillip, and C. F. Bjork, J. Polym. Sci., 6, 544 (1951).
16. A. I. Goldberg, W. P. Hohenstein, and H. Mark, J. Polym. Sci., 2, 503 (1947).
17. Q. A. Trementozzi, J. Polym. Sci., 23, 887 (1957).
18. S. R. Palit, G. Colombo, and H. Mark, J. Polym. Sci., 6, 295 (1951).

Received January 22, 1971

[^0]: a Data of Moore and Fort. ${ }^{13}$
 ${ }^{\text {b }}$ Data of Daoust and Rinfret. ${ }^{14}$
 c Data of Phillip and Bjork ${ }^{15}$
 ${ }^{\text {d }}$ Data of Goldberg, Hohenstein, and Mark. ${ }^{16}$

