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Synopsis

In the present paper we have analytically derived a single-point equation for deter-
mining the intrinsic viscosity of a polymer. It is observed that the proposed equation
gives a much better agreement with the extrapolated value of [4] over a wide range of
concentration for good as well as poor polymer-solvent systems.

INTRODUCTION

It is convenient to determine the intrinsic viscosity [7] of a polymer by
measurement of its viscosity in solution at a single concentration. Solomon
and Ciuta! proposed the use of the following equation:

L (26 — Inn)]” 1)

Cc

[n]

Narr et al.?2 have deduced this equation from the viscosity equation of
Huggins?:

™ = ] + K'lnle @)

Solomon and Gotesman* analytically derived another single-point equation

] =" [+ Yamip] ®3)

The remarkably simple equations of Solomon and Ciuta and Solomon
and Gotesman which contain no constant characteristic of polymer solvent
system give fairly accurate values of [7] at low concentrations. Shroffs
and Pechoc® have shown that the Solomon-Ciuta equation is valid for good
polymer solvent systems where K’ of eq. (2) is0.3 < K’ < 0.4. However,
when K’ is significantly out of this range, as is the case with poor solvents,
these equations give [n] values that differ considerably from the extrapo-
lated value of {y].

Deb and Chatterjee’ derived another single-point equation by eliminating
K’ from the Schulz-Blaschke? equation:

22— ] 4 K[}y 4)
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Their equation is
1 "
[n] = . [Bn 9 — nep + /en%) 17 6

The above equation was also derived by Palit and Kar® by assuming
K’ = 0 and including higher-order terms in the polynomial expansion of
In 7,.

In the present paper we have derived a single-point equation by using the
empirical viscosity relation of Schramek.® Our equation gives acecurate
results for good as well as poor polymer solvent systems.

THEORETICAL ANALYSIS

We start from the empirical viscosity relation of Schramek!0:
"[n])e] .
= g9 = o |1+ KT 0
m

This equation has two parameters, K’ and m, and is quite general. In
faet, it reduces to the Huggins equation when m = 1, to the Schulz-Blaschke
equation and Martin' equation when m = — 1 and «, respectively.

The function ln ,/c is denoted by ®(c). By the definition of intrinsic
viscosity, we have

[7] = Lim »2 = f(0)

c—0

| )
] = Llnm—wm
c—->0 €
Functions f(c) and ®(c) can be expanded in Taylor-Maclaurin form,
o) = f(0) + ¢f'(0) + f"(O) + . )]
(c) = ¥(0) + c?'(0) + ‘I>"(0) + . )

Since 7, = 1 + u4p, In 9, can be expanded in the following form (for
Nep < 1):

Lt T
In 5 = 74 9 + 3 PN (10)
which gives
2 2 3
@(c):M’=7_7ﬂ’__C_<M) +C_('gﬂ,) - . (11)
c ¢ 2\e¢ 3\e¢

This can be written in the form

50 — () = EL“W©¢‘ (12)
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From eqs. (8) and (9) we get

(n) - @) 0
mor — In 7, = olf(0) — 8] = & 1@ =200

n=0 n!

n41 (13)

where f®™(0) and ®™(0) denote the nth derivatives of f and ® with respect
tocatc = 0.

We shall now discuss various approximations of eqs. (12) and (13):

(a) Tt will be observed from egs. (12) and (13) that f(c) = ®(c¢) when
¢ = 0, i.e., f(0) = ®(0), which is the intrinsic viscosity by definition [eq.
M1

f0) = 2(0) = [»].
(b) Differentiating eq. (13) with respect to ¢, we get

(=1)

fie) — @'(c) = ;2 N (G — De=f(0) + PO )] (14)
whenc¢ = 0,
) — @'(0) = 1/of*0) = /a[n] (15)
Substituting in eq. (13), we get
Nep — D9, = 1/3[n]%? (16)

which is the Solomon-Ciuta equation.

(¢) Terms higher than ¢? can be included in eq. (16) for a better ap-
proximation. This is achieved by including f''(c) — ®''(¢) in eq. (13).
Differentiating eq. (14) with respect to c, ,

o -0 = T (531—> [ — DG — De=3()

+ 20 — D@} + {0} a7
Since f'(0) = K'[5]% from eq. (6), eq. (17) gives, for ¢ = 0,

70 — @"(0) = 2(K" — /s [n]* (18)
Substituting egs. (15) and (18) in eq. (13) gives
nep — In g, = Ys[n]%* + (K" — 1/3)[n)’¢* (19)

which can be reduced to the Solomon-Gotesman equation by eliminating K’
from it with the help of the Huggins equation, eq. (2). For good polymer
solvent systems, K’ ~ 1/; and the second term on the right-hand side of
eq. (19) is negligible in comparison with '/;[n]%?% Equation (19) thus
reduees to the Solomon-Ciuta equation.

(d) For a better approximation, we included terms higher than [5]%?
in eq. (19). This is achieved by including f'/'(¢) — ®'''(¢) in eq. (13).
Proceeding in the above manner, we get

£17°0) — @''(0) = 3 [1 ok 4 m 1 K{I (20)
2 m
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Equation (13) gives
252 1
Nep — g, = [77120 I:l + 2<K' - 6—))[7]]0

1 !
+(§—ZK+

2m

m 1 K) [n]202]- (21)

Form = 1, the above equation redueces to the modified single-point equation
of Shroff.5 .
With the help of eq. (6), eq. (21) can be reduced to the following form:

= l _ /2 _ r__ 1
[77] = c [2(7]” In 7’1)] ‘:1 (K 3)77")

e Rl Y] e

For good polymer—solvent systems, K’ =~ 1/, eq. (22) reduces to

1 1/, 1 l o
] = - 2@ — In )17 [1 + (;1 - 2) 18 ] )

At low concentrations, 3%, << 1, and our equation reduces to the Solomon-
Ciuta equation. For higher concentrations or for the polymer—solvent
systems where K’ differs significantly from the value of /5 the 7,, and
7%, terms in eq. (22) give a significant contribution and hence cannot
be neglected. Assuming K’ = !/, for poor solvents, eq. (22) reduces to

1 v ey e (11
] =~ 12010 — In 9)]" [1 6 Ts (; - 2)] &y

DISCUSSION

Viscosity data on some polymer—solvent systems are taken from the
literature. Intrinsic viscosity calculated with our equation is compared
with that obtained from the Solomon-Ciuta, Solomon-Gotesman, and Deb-
Chatterjee equations. The results for good and poor polymer—solvent sys-
tems are given in Tables I and IT, respectively.

For good polymer—solvent systems, it is observed that the Solomon-
Ciuta and Solomon-Gotesman equations give fairly accurate values of
[7] at low concentrations. At higher concentrations, however, the devia-
tion from the extrapolated value of [] is considerable. This large error
is due to neglect of higher-order terms in the derivation of these equations.
However, the Solomon-Gotesman equation gives better results. The
Deb-Chatterjee equation gives much higher values of [7] even at low con-
centrations. This behavior of the Deb-Chatterjee equation is quite natu-
ral because in its derivation it was assumed that K’ = 0. However, Gil-
lispie and Hulme!? have shown that the results obtained from this equation
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TABLE 11
Comparison of [y] Values for Poor Polymer—Solvent Systems

[4] Calculated

Solomon-  Deb-
Solomon- Gotes- Chatter- Our

Conen., (7] Ciuta man jee equation

Polymer-solvent system  g/dl Graph equation equation equation m = o
Polyethylene—p- 0.15 0.980 0.950 1.003 0.957
xylenes 0.30 0.954 0.990 0.963 1.013 0.953
0.45 1.003 0.980 1.036 0.950
Poly (methylmeth- 0.20 0.713 0.711 0.686 0.702
acrylate)-acetoneb 0.40 0.694 0.728 0.722 0.740 0.700
0.60 0.738 0.727 0.785 0.698
Poly(vinyl acetate)- 0.20 0.628 0.632 0.640 0.627
acetophenone® 0.40 0.621 0.642 0.640 0.642 0.623
0.60 0.650 0.643 0.670 0.621
Polystyrene-15:85 0.15 0.966 0.967 0.992 0.944
acetone: methyl 0.30 0.945 0.9%9 0.981 1.003 0.948
cyclohexaned 0.45 1.002 0.986 1.039 0.948

a Data of Trementozzi.?

b Data of Moore and Fort.13

¢ Data of Daoust and Rinfret.1¢

d Data of Palit, Colombo, and Mark.1®

are identical with those obtained from the Huggins equation when K’ =
Y

It is observed that our eq. (23) gives very good agreement with the ex-
trapolated values of [7]. In extremely good polymer—solvent systems, our
eq. (23) with m = — 1 gives accurate results, whereas for fairly good poly-
mer—solvent systems eq. (23) with m = + 1 gives fairly accurate values of
[7]. We can thus write our eq. (23) in the following form:
(1) For extremely good polymer-solvent systems:

1 1/, 7’sp or
[1] = 20 —Ina) 1?1 =200 (25)
(i1) For fairly good polymer-solvent systems:
1 1/, N%sp
[7] = ; [2<77.5'p — In5,)] 1+ 18 . <26)

For poor polymer-solvent systems, where K’ ~ 1/,, the existing single-
point equations give a very high value of

A[n] = ,[l]filc_:M X 100%

[n ]expt,

at higher concentrations. Iven here it is observed that the results ob-
tained from the existing equations are in the following order:

[U]Deb-Chatterjee > ["]]Solomon-(}otesnum > [n]Solomon-Ciuta > [T)]gmph-
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Our eq. (24) for poor solvents with m = <« gives the best results. We can
thus write the equation for poor polymer—solvent systems as

1 ' s %
] = - 201, — In 5,)]" l:l L p].

2
6 16 @0

For some polymer-solvent systems, however, it is observed that the value
of K’ is very much different from its value of 1/; and !/, for good and poor
systems, respectively. In such cases more accurate values of [n] may be
obtained by using the general eq. (22) if K’ for that particular polymer-
solvent system can be estimated.

CONCLUSIONS

It is concluded, therefore, that the existing single-point equations are
valid only for good polymer—solvent systems, where K’ ~ 1/;, at low con-
centrations. For poor polymer-solvent systems and also at higher con-
centrations, these equations gives a poor agreement with the extrapolated
value of [9]. Our eqgs. (25) and (26) for good polymer—solvent systems and
eq. (27) for poor polymer-solvent systems give a fairly accurate value of
[#] over a wide range of concentrations.

The authors are extremely grateful to Dr. J. N. Nanda, Director, Defence Research
Laboratory (Materials), Kanpur, for his guidance and many valuable suggestions.
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